Nov 23, 2012

_______________________________________________________________

HEALING OF COMPLEX WOUNDS: RESULTS OF THE APPLICATION OF A COMPLEX OF HYALURONIC ACID AND IODINE

CICATRIZACION DE HERIDAS COMPLICADAS: RESULTADOS DE LA APLICACIÓN DE UN COMPLEJO DE ÁCIDO HIALURÓNICO Y YODO
_______________________________________________________________

AUTORES: Vítor Santos, Ana Sofia Santos, Elsa Menoita

Resumo

O ácido hialurónico, um glicosaminoglicano (GAG), é um polissacárido encontrado em muitos locais no corpo humano, tais como o tecido da pele, olhos e tecido conjuntivo. Ela também é encontrada em outros mamíferos e bactérias. Como um componente da matriz extracelular, o seu papel na reparação de feridas, entre outros, é o de proporcionar uma estrutura temporária para suportar a formação de tecido novo. Aproveitando a ação terapêutica do ácido hialurônico numa aplicação tópica de benefício clínico comprovado mostrou-se desafiante. Um novo desenvolvimento da tecnologia hyaluronan, compreendendo hialuronato de sódio e complexo de iodo, oferece uma nova abordagem na exploração dos benefícios do ácido hialurónico e entregando reais benefícios clínicos para uma vasta gama de tipos de feridas complexas. Assim foram realizados os estudos de caso apresentados neste artigo, os primeiros em que se utilizou este produto em Portugal, com o apoio da Queenlabs, Lda.

Palavras-chave: Ácido hialurônico; cicatrização;  ferida; antimicrobiano; iodo, case study

_______________________________________________________________

Abstract

Hyaluronic acid, a glycosaminoglycan (GAG), is a polysaccharide found in many places in the human body, such as skin tissue, eye tissue and in all kinds of connective tissue. It is also found in other mammals and bacteria. As a component of the extracellular matrix, its role in wound repair, among others, is to provide a temporary structure to support the formation of new tissue. Harnessing the therapeutic action of hyaluronic acid in a topical application of proven clinical benefit proved challenging. A new development in technology hyaluronan, comprising sodium hyaluronate and iodine complex, offers a new approach in exploiting the benefits of hyaluronic acid and delivering real clinical benefits for a wide range of types of wounds complex. So we carried out the case studies presented in this article, the first ones in which this product is used in Portugal, with the support of Queenlabs, Lda.

Keywords: Hyaluronic Acid, healing, wound; antimicrobial; iodine

_______________________________________________________________

INTRODUÇÃO

O ácido hialurónico, é um polímero de ocorrência natural dentro da pele, que tem sido extensivamente estudado desde a sua descoberta, em 1934. Tem sido usado numa ampla variedade de áreas médicas tão diversas como ortopedia e cirurgia cosmética, mas é na engenharia de tecidos que têm sido obtidos os maiores avanços. Os produtos de degradação desta macromolécula têm uma diversidade de propriedades que lhe conferem vantagens no campo de cicatrização da ferida. Pode ser fabricado sob várias formas, desde géis, ou apósitos sólidos.

Recentemente, a investigação sobre a cicatrização de feridas expandiu dramaticamente. Este tem sido alimentado por uma série de descobertas, particularmente nos últimos 25 anos. Técnicas descritas no último quarto de século incluem a cultura de queratinócitos humanos em 1975, o primeiro análogo dérmico em 1979, e a descoberta de uma variedade de citocinas e mediadores inflamatórios que modulam a cicatrização de feridas (Chen, 1999). A abertura de cada campo levou a explosões em tecnologia, que teve ramificações em quase todos os ramos da medicina. Na área da cicatrização de feridas, os produtos de engenharia variam de pensos simples para feridas, a substitutos de pele formados a partir de culturas mistas, o chamados enxertos sitéticos.

De um modo geral, as pesquisas têm se concentrado em duas áreas. A primeira delas, as complexas interações baseadas em mediadores inflamatórios e citocinas, que está além do âmbito do presente artigo, mas é um campo de possibilidades que surgem,  e no qual, por exemplo, a manipulação de moléculas específicas podem afetar a cicatrização de feridas. A segunda grande área em estudo, consiste no enfoque sobre a matriz extracelular e das suas interacções com as células.

A investigação sobre a matriz extracelular tem sido geralmente centrada em dois materiais:  matrizes de colagenio e ácido hialurônico. A matriz de colagénio foi a primeira a ser desenvolvida, na década de 1980. Yannas et al.  desenvolveram uma matriz composta de sulfato de condroitina de colagénio. Todos os produtos de colágeno utilizadas desta forma tem um origem xenogenética, geralmente utilizando colágeno bovino com outro produto, como por exemplo a celulose regenerada oxidada (Price et al., 2005).

Em contraste com a matriz de colagénio, os materiais de ácido hialurónico são derivados a partir do produto mesma base, que é altamente conservada entre as espécies. É necessária uma modificação química a fim de se obter uma estrutura de um polímero estável, mas o material é essencialmente o mesmo, independentemente da sua origem. Além disso, o material é relativamente único no campo da engenharia de tecidos uma vez que os seus produtos de degradação parecem ser activos na cicatrização de feridas. Isto conduziu a uma riqueza de pesquisa dentro do campo da cicatrização de feridas e permitiu que o material pudesse ser usado numa variedade de formas.

O Ácido Hialurónico

O ácido hialurónico foi descoberto pela primeira vez no humor vítreo do olho em 1934 e foi subsequentemente sintetizado in vitro, em 1964. É um polímero com base numa unidade dupla de dois açúcares:. Ácido D-glucurónico e N-acetil -glucosamina. Os produtos de degradação do ácido hialurónico parecem ter propriedades que afectam activamente a cicatrização de feridas e cinética celular (Chen 1999). Os estudos indicaram que a maioria dos efeitos atribuídos à molécula são aplicáveis a uma faixa estreita de produtos de degradação e, por conveniência, os fragmentos são agora divididos em variedades de cadeia curta e longa.

Cicatrização de Feridas e o Ácido Hialurônico + Iodo

Em 1991, West et al. demonstraram que a degradação produtos de ácido hialurônico consistiram num factor pró-angiogênico, e observou que esse efeito foi limitado a fragmentos de entre 4 e 25 de dissacarídeos de comprimento. Este foi um dos primeiros estudos com modulação do ambiente da ferida por ácido hialurônico. A resposta angiogênica foi confirmado em 1994 e em 1997, sendo posteriormente esta resposta atribuída a um efeito sobre as vias de sinalização intracelular reforçada pela co-aplicação do factor de  crescimento endotelial vascular. Esta resposta tem particular importância na biologia tumoral, onde parece ser parcialmente responsável pela maior angiogenese verificada em certos tumores (Price et al.,2005).

A adesão celular à matriz extracelular também parece estar estreitamente relacionada com o receptor de CD44 e ácido hialurónico. Existem provas claras de que este é o meio preferencial de fixação para fibroblastos, e pode ser o meio pelo qual as células aderem primáriamente ao substrato independentemente da motilidade subsequente (Price et al.,2005).

A deposição de colagénio pelos fibroblastos é um dos factores-chave na reconstituição da matriz de suporte na lesão e é a natureza desta deposição que determina em grande parte a qualidade da cicatriz. Há também evidências de que a aplicação de ácido hialurónico leva a uma remodelação da matriz extracelular melhorada com uma deposição de colágeno, mais ordenada, com menor degradação.

A interação dos queratinócitos com ácido hialurônico é complexo. Existe um corpo de evidência que sugere que a molécula se encontra dentro dos epitélios normais, sendo que parece, haver preferencial interacção com CD44 em aspectos apicais e lateral da célula. Este é deslocado, de forma seletiva, por fragmentos> 10U mas não <10U.  A interação entre células e ácido hialurônico peri-celular, provavelmente, depende da resposta da célula ao EGF,  que modula fortemente a acção deste. Pensa-se que o ácido hialurónico tenha um número de inter-funções dependentes na cicatrização de feridas e é uma parte integrante da matriz extracelular (ECM), providenciando-lhe estabilidade e elasticidade. É um composto altamente higroscópico (retêm humidade); atrai grandes quantidades de água para o espaço extracelular, com vários efeitos no processo de cicatrização da ferida. Ao manter um ambiente húmido, o ácido hialurônico protege as células contra os efeitos da secura, também ajudando a célula no movimento, ajudando a célula em divisão para dissociar-se do seu substrato e fornecer uma matriz hidratada, o que facilita esse mesmo movimento.

O ácido hialurônico não parece ter um papel ativo na modificação da resposta inflamatória. A inflamação inicia o processo de cicatrização, mas a resposta inflamatória precisa ser moderado, senão a reparação tecidular não pode prosseguir normalmente e a matriz não tem a estabilidade necessária para a migração celular e proliferação. Parece ter um efeito contra os radicais livres, embora sua ação específica seja desconhecida. Além disso, é pensado para moderar a resposta inflamatória através das suas interacções específicas com constituintes da resposta inflamatória, estabilizando actividade de citoquinas e reduzindo os danos induzidos pelas proteases.

O ambiente de cicatrização húmido criado após aplicação tópica de ácido hialurônico interage com o apósito secundário, que permite alguma evaporação da água para o ambiente. À medida que a concentração de água reduz, o ácido hialurónico atrai mais água e factores de crescimento dos tecidos circundantes. De vido ao seu elevado peso molecular vai actuar como uma bomba, em relação aos factores de crescimento, que se vão tornando cada vez mais concentrados na ferida e optimizar potencial de cicatrização (Price et al.,2005).

Apesar dos benefícios potenciais do uso do ácido hialurônico, existem fatores que limitam a sua acção na prática clínica. Reconhece-se unanimemente que a ferida não é um ambiente estéril. Todos os ferimentos são colonizados por bactérias (biocarga) que podem influenciar o processo de cicatrização. O sistema imunitário do hospedeiro está mobilizado para controlar  a proliferação bacteriana  e manter um equilíbrio, o que contribui para que a cicatrização possa ser alcançada. No entanto, há momentos em que as defesas do hospedeiro estão saturadas e os números de bactérias continuam a subir e a concorrer por nutrientes bem como produzir toxinas bacterianas com impacto negativo na cicatrização de feridas. A gestão da carga bacteriana pela otimização de defesas do hospedeiro e na redução do número de bactérias é aceite como um princípio importante no tratamento de feridas. Os efeitos da carga bacteriana são particularmente relevantes quando se considera o uso tópico de ácido hialurónico. A promoção de um ambiente húmido pela ação higroscópica do ácido hialurônico, não só proporciona um ambiente ideal para a proliferação de acolhimento cel-intracelular e mobilização, mas também induz um ambiente no qual as bactérias podem multiplicar-se. Além disso, um certo número patógenos comuns em feridas, podem produzir hialuronidase, a enzima responsável para o fraccionamento do seu elevado peso molecular, como um subproduto (Dechert,2006).

Enquanto a fragmentação molecular ocorre naturalmente dentro da ferida, a decomposição rápida da molécula altera a acção do material, que afectam os benefícios potenciais da sua aplicação tópica. Uma estratégia para minimizar este facto é esterificar o ácido hialurónico, o que origina um produto com uma maior resistência à acção de hialuronidase, mas afecta a acção higroscópico do produto: quanto mais esterificado, menor a sua capacidade hidrofílica. Outra abordagem possível é combinar o ácido hialurónico com um composto antimicrobiano eficaz, que fornece protecção contra a degradação da hialuronidase, tal como iodo (Cutting,2011).

O iodo foi usado para a prevenção e tratamento da infecção por mais de 150 anos, sendo que possui um largo espectro de actividade antimicrobiana, rapidamente inibindo bactérias, leveduras, bolores, protozoários e vírus. O iodo é ainda eficaz contra bactérias formadoras de endosporos. Estafilococos resistentes e sensíveis à meticilina têm sido identificados como igualmente susceptíveis ao iodo. Acredita-se que a ligação de iodo com proteínas conduz à desnaturação por oxidação em aminoácidos, actuando nas pontes de hidrogénio. Estas alterações afectam a estrutura e a função de tanto a integridade estrutural das bactérias e a sua actividade enzimática, e, portanto, têm vérios efeitos sobre a função microbiana. Assim, as alterações nas paredes celulares, membranas e resultam na morte citoplasma rápida após a exposição ao iodo (Cutting,2011).

Alguma preocupação foi levantada sobre os efeitos colaterais (dor na aplicação) e toxicidade do iodo no tratamento de feridas. Alguns estudos têm mostrado que o iodo pode ter efeitos negativos sobre a cultura de tecidos, ou seja, granulócitos, monócitos, queratinócitos e fibroblastos; no entanto, outros relatos têm sugerido que essa toxicidade tópica provavelmente não é de relevância clínica e é dose dependente. Houve também um pequeno número de relatos de casos de estudo, que sugerem que o uso tópico de produtos com iodo podem afetar a função da tireóide. De um modo  geral, não há risco claro para pessoas aparentemente saudáveis. Leaper e Durani na sua revisão que apenas foram encontradas anomalias menores em múltiplos artigos, tais como um aumento no iodo ligado à proteína, mas não houve alterações em testes de função da tireóide. As complicações graves só foram encontradas em extensa exposição ao iodo em alta concentração (risco de disfunção tireoideia hiper ou hipotireoidismo, acidose metabólica), enquanto o risco para pacientes normais é mínima. Deve-se ter especial cuidado na aplicação de produtos à base de iodo em pessoas com disfunção tireoideia conhecida ou queimaduras extensas, crianças, mulheres grávidas ou lactantes. Um relatório de uma reunião de consenso internacional sobre o uso de iodo no tratamento de feridas, foi deduzido que formulações de libertação lenta que geram baixas concentrações de iodo numa lesão foram eficazes e não tóxicas. As reacções alérgicas ao iodo são raras. Quando ocorrem, parecem estar relacionadas com os compostos usados em associação com o iodo, tais como povidona, no composto iodopovidona (Dechert, 2006).

Recentemente foi desenvolvido um complexo patenteado de hialuronato de sódio 1,5% (sal de sódio de ácido hialurónico,), produzido por um processo de fermentação, iodeto de potássio a 0,15% (Kl) e iodo 0,1%. De acordo com o fabricante, a concentração (0,1% de iodo) é baixa em comparação com soluções antissépticas existentes, a fim de minimizar a ocorrência de irritação, embora mantendo as  propriedades do iodo contra bactérias que podem causar degradação de ácido hialurônico. Trata-se de um composto indicado para o tratamento de uma variedade de feridas agudas e crónicas complexas. Dentro da solução, o ácido hialurônico destina-se a promover um ambiente húmido e maximizar o potencial de cicatrização através do apoio à viabilidade e migração celular, mantendo o ambiente extracelular hidratado, potenciando os fatores de crescimento. A adição de iodo destina-se primariamente para actuar como uma protecção antimicrobiana para hialuronidase, enquanto que ao mesmo tempo, fornece protecção antimicrobiana para a ferida. Isso prolonga a disponibilidade do ácido hialurónico na ferida, optimizando a sua acção sobre a cicatrização de feridas (Cutting,2011).

Existe, portanto, um grande conjunto de evidências a partir de estudos científicos para indicar que o ácido hialurónico pode afectar, de um modo benéfico, vários dos componentes da cicatrização de feridas. Assim, o ácido hialurónico tem sido utilizado in vivo no tratamento de feridas com algum sucesso.

Estudos de Caso

Para a realização destes estudos de caso, foi efectuada uma breve documentação do historial clínico do doente e caracterização da ferida. A área foi foi monitorizada recorrendo planimetria digital, com análise de fotos digitais no software OsiriX. Esse mesmo registo fotográfico serviu como base para uma avaliação mais qualitativa da evolução da ferida.

  • Caso n.1: Sra. P.S.

Senhora com 52 anos de idade, pé diabético, com úlcera neuropática em tuberosidade óssea da face lateral do pé direito, com 3 meses de evolução.

Tratamento anterior com várias terapêuticas avançadas, sem sucesso. Foi calculado no membo inferior direito (membro afetado) um indice de pressão tibio-braquial  (IPTB) de 0.98, o que exclui de acordo com a observação clinica do membro, doença arterial. No membro contralateral o IPTB era de 0,96.

Tratamento Implementado: Foram efectuados 2 tratamentos com alginato de cálcio + Ác. Hialurónico com iodo, num espaço temporal de 10 dias, obtendo-se cicatrização completa(Figuras 1 e 2).

Figura 1

Figura 2

  • Caso n.2: Sr. J.C

Homem com 88 anos de idade, úlcera de etiologia arterial na face externa da perna direita, com evolução de 1 mês. Foi efectuado desbridamento de extensa área de necrose seca com flutuação e drenagem subjacente, com técnica em tampa. Trata-se de um doente acamado, cujos antecedentes pessoais conhecidos são a hipertensão arterial, hipercoelesterolémia, insuficiência renal crónica, anemia e insuficiência cardíaca congestiva. Foi calculado o IPTB, que era de 0,612 no membro afectado (direito) e de 0,7 no membro contralateral (esquerdo). Apresentava dor intensa, exsudado espesso moderado, tecido de granulação pálido, odor fétido, apenas ligeiro edema maleolar, musculo gemelar atrofiado, pele frágil, brilhante e sem pêlos, fria, rubor pendente e palidez da perna com elevação. Tempo de re-preenchimento do leito ungueal superior a 3 segundos. Trata-se portanto de uma ferida extremamente complexa e com poucas possibilidades de vir a cicatrizar, ou mesmo evitar a amputação do membro que era encarada pelo médico assistente como a hipotese mais provável. Foi medicado com apósito transdérmico de fentanil, com dose ajustavel ao longo do tempo, suplemento de ferro e foram pedidas análises de controlo.

Tratamento local da Ferida: Durante 3 dias foi aplicado Alginato Ag+, de modo a combater a infecção. O apósito secundário consistiu em espuma de poliuretano. Quando se reduziram os sinais de infecção local, foi aplicado alginato de cálcio + Ác. Hialurónico com Iodo e um poliuretano como apósito secundário. A evolução da ferida está representada nas figuras 3 a 10. Em cerca de um mês e meio esta lesão arterial diminuiu 84%.

Figura 3

Figura 4

Figura 5

Figura 6

Figura 7

Figura 8

Figura 9

Figura 10

  • Caso n.3: Sr. G.E.

Homem com 58 anos de idade, pé diabético, com “pé de charcot há cerca de 11 anos, úlcera neuropática na convexidade plantar, desde há 10 anos. Foi efectuado estudo com doppler, tendo sido obtido um IPTB de 0,81, o que sugere doença arterial ligeira apesar de apresentar pouco sinais sugestivos desta patologia no membro inferior, tem inclusive tempo de re-preenchimento leito ungueal inferior a 3 segundos. No membro contralateral tem um IPTB equivalente de cerca de 0,87. Doente com calçado adaptado, mas com necessidade de revisão por técnico da área ou Podologista. De modo a incidir no principal factor etiológico da lesão, o alivio da pressão local passou a ser efectuado com recurso a uma bota de walker.  A lesão apresenta alguma profundidade, cuja aparência é exacerbada pelas volumosas hiperqueratoses que apresenta em todo o bordo da úlcera. Apresenta tecido de granulação pálido, sem tecido necrótico ou depósitos de fibrina. Exsudado moderado, sem odor, sem edema local.

Tratamento anterior com compressa não-aderente com iodo, sendo o penso secundário compressas.

Tratamento: A abordagem terapêutica passou pelo desbridamento das hiperqueratoses para efectuar um “reshape” das margens da úlcera. Uma vez que se trata de uma úlcera com vários anos de duração tentou-se excluir a presença de biofilmes, com a aplicação de polihexanida+betaina em solução e em gel nos primeiros 3 tratamentos (1 dia de intervalo), associado a uma matriz de alginato com prata iónica. Após esta abordagem iniciou-se a aplicação de Ác. Hialurónico com Iodo associado a um poliuretano como penso secundário, sendo o penso efectuado de 2 em 2 dias. Nas figuras 11 a 18, encontra-se a evolução fotográfica e da área da lesão ao longo dos dois meses de tratamento, que levaram à sua cicatrização completa, apesar infelizmente não ter uma foto com a pele completamente integra, é impressionante a evolução que sofreu uma úlcera que teve a sua génese há cerca de uma década atrás.

Figura 11

Figura 12

Figura 13

Figura 14

Figura 15

Figura 16

Figura 17

Figura 18

Considerações Finais

Antes de experimentar o produto a expectativa não era muito grande pois até agora o feedback  disponível acerca da utilização de ácido hialurónico em feridas, era muito “sui generis”, na medida em que produzia alguns casos de sucesso, mas noutras situações aparentemente equivalentes não se conseguia extrapolar o sucesso obtido em situações anteriores. Este tipo de situação veio a esclarecer-se quando se  começou a publicar documentos acerca da necessidade de esterificação do ácido hialurónico e processos de degradação por parte da biocarga da lesão. Estes factos vieram colocar neste principio activo o “rótulo” de apósito duvidoso, sendo que se deixou de ouvir falar deste no meio cientifico durante alguns anos, no que concerne a feridas. No entanto ao sabermos que este não sendo esterificado se torna mais eficaz, resolvia-nos metade do problema, mas criava ou pelo menos agravava outro: as bactéria conseguem degradar o principio activo mais facilmente, pelo que a questão fica resolvida pela adição do iodo. A presença de iodo numa concentração de 0,1% não é citotóxico, controla a carga bacteriana e impede a degradação rápida do Ácido Hialurónico por parte de bactérias colonizadoras. O ácido hialurónico tem na verdade um papel multifacetado na reparação tecidular, desde processos inflamatórios precoces, à formação de tecido de granulação e epitelização. Por sí só não é indicado em feridas infectadas! A sua utilização neste tipo de feridas pode comprometer seriamente a rentabilidade deste e comprometer o processo de cicatrização. Dos estudos de caso efectuados, em situações patológicas verdadeiramente complexas, os resultados obtidos foram extremamente satisfatórios, e fazem com que os cuidadores de pessoa com feridas crónicas estagnadas voltem a olhar com outros olhos para este produto, que surge agora naquela que parece ser a combinação ideal para “desencravar” a ferida crónica.

Referências Bibliográficas

– Sun, L., Bencherif, S., Gilbert, T., Farkas, A., Lotze, M., & Washburn, N. (2010). Biological activities of cytokine-neutralizing hyaluronic acid-antibody conjugates. Wound Repair & Regeneration, 18(3), 302-310. doi:10.1111/j.1524-475X.2010.00591.x Permalink: http://search.ebscohost.com/login.aspx?direct=true&db=rzh&AN=2010657004&site=ehost-live

– Matsumoto, Y., Arai, K., Momose, H., & Kuroyanagi, Y. (2009). Development of a wound dressing composed of a hyaluronic acid sponge containing arginine. Journal Of Biomaterials Science. Polymer Edition, 20(7-8), 993-1004. Permalink: http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=19454165&site=ehost-live

– Matsumoto, Y., & Kuroyanagi, Y. (2010). Development of a wound dressing composed of hyaluronic acid sponge containing arginine and epidermal growth factor. Journal Of Biomaterials Science. Polymer Edition, 21(6), 715-726.Permalink: http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=20482980&site=ehost-live

– Matsumoto, Y., & Kuroyanagi, Y. (2010). Development of a Wound Dressing Composed of Hyaluronic Acid Sponge Containing Arginine and Epidermal Growth Factor. Journal Of Biomaterials Science — Polymer Edition, 21(6/7), 715-726. doi:10.1163/156856209X435844 Permalink: http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=50185757&site=ehost-live

– David-Raoudi, M., Tranchepain, F., Deschrevel, B., Vincent, J., Bogdanowicz, P., Boumediene, K., & Pujol, J. (2008). Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing. Wound Repair And Regeneration: Official Publication Of The Wound Healing Society [And] The European Tissue Repair Society, 16(2), 274-287.Permalink: http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=18282267&site=ehost-live

– David-Raoudi, M., Tranchepain, F., Deschrevel, B., Vincent, J., Bogdanowicz, P., Boumediene, K., & Pujol, J. (2008). Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing. Wound Repair & Regeneration, 16(2), 274-287.Permalink: http://search.ebscohost.com/login.aspx?direct=true&db=rzh&AN=2009855761&site=ehost-live

– Smart, N. (2010). Dressings and topical agents containing hyaluronic acid for wound healing. Cochrane Database Of Systematic Reviews, (7),(Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=chh&AN=CD007089&site=ehost-live

– Slavkovsky, R., Kohlerova, R., Jiroutova, A., Hajzlerova, M., Sobotka, L., Cermakova, E., & Kanta, J. (2010). Effects of hyaluronan and iodine on wound contraction and granulation tissue formation in rat skin wounds. Clinical And Experimental Dermatology, 35(4), 373-379.(Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=19874318&site=ehost-live

– Slavkovsky, R. R., Kohlerova, R. R., Jiroutova, A. A., Hajzlerova, M. M., Sobotka, L. L., Cermakova, E. E., & Kanta, J. J. (2010). Effects of hyaluronan and iodine on wound contraction and granulation tissue formation in rat skin wounds. Clinical & Experimental Dermatology, 35(4), 373-379. doi:10.1111/j.1365-2230.2009.03559.x (Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=49207935&site=ehost-live

– Voinchet, V., Vasseur, P., & Kern, J. (2006). Efficacy and Safety of Hyaluronic Acid in the Management of Acute Wounds. American Journal Of Clinical Dermatology, 7(6), 353-357.(Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=23495056&site=ehost-live

– Ferguson, E. L., Roberts, J. L., Moseley, R., Griffiths, P. C., & Thomas, D. W. (2011). Evaluation of the physical and biological properties of hyaluronan and hyaluronan fragments. International Journal Of Pharmaceutics, 420(1), 84-92. doi:10.1016/j.ijpharm.2011.08.031(Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=66662787&site=ehost-live

– Chen, W., & Abatangelo, G. (1999). Functions of hyaluronan in wound repair. Wound Repair & Regeneration, 7(2), 79-89. (Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=rzh&AN=1999063929&site=ehost-live

– CHEN, W., & ABATANGELO, G. (1999). Functions of hyaluronan in wound repair. Wound Repair & Regeneration, 7(2), 79.(Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=5228193&site=ehost-live

– Tammi, R., & Tammi, M. (2009). Hyaluronan accumulation in wounded epidermis: a mediator of keratinocyte activation. The Journal Of Investigative Dermatology, 129(8), 1858-1860.(Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=19603053&site=ehost-live

– Dechert, T., Ducale, A., Ward, S., & Yager, D. (2006). Hyaluronan in human acute and chronic dermal wounds. Wound Repair And Regeneration: Official Publication Of The Wound Healing Society [And] The European Tissue Repair Society, 14(3), 252-258.(Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=16808803&site=ehost-live

– Liao, Y., Jones, S., Forbes, B., Martin, G., & Brown, M. (2005). Hyaluronan: pharmaceutical characterization and drug delivery. Drug Delivery, 12(6), 327-342 (Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=16253949&site=ehost-live

– Manuskiatti, W., & Maibach, H. (1996). Hyaluronic acid and skin: wound healing and aging. International Journal Of Dermatology, 35(8), 539-544.(Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=8854147&site=ehost-live

– Xie, Y., Upton, Z., Richards, S., Rizzi, S. C., & Leavesley, D. I. (2011). Hyaluronic acid: Evaluation as a potential delivery vehicle for vitronectin:growth factor complexes in wound healing applications. Journal Of Controlled Release, 153(3), 225-232. doi:10.1016/j.jconrel.2011.03.021(Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=63558413&site=ehost-live

– Price, R., Berry, M., & Navsaria, H. (2007). Hyaluronic acid: the scientific and clinical evidence. Journal Of Plastic, Reconstructive & Aesthetic Surgery: JPRAS, 60(10), 1110-1119.(Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=17466613&site=ehost-live

–  Brenes, R., Ajemian, M., Macaron, S., Panait, L., & Dudrick, S. (2011). Initial experience using a hyaluronate-iodine complex for wound healing. The American Surgeon, 77(3), 355-359.(Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=21375852&site=ehost-live

–  BRENES, R. A., AJEMIAN, M. S., MACAROB, S. H., PANAIT, L., & DUDRICK, S. J. (2011). Initial Experience Using a Hyaluronate-Iodine Complex for Wound Healing. American Surgeon, 77(3), 355-359.(Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=59242532&site=ehost-live

– Demirdögen, B., Elçin, A., & Elçin, Y. (2010). Neovascularization by bFGF releasing hyaluronic acid-gelatin microspheres: in vitro and in vivo studies. Growth Factors, 28(6), 426-436. doi:10.3109/08977194.2010.508456 (Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=56593881&site=ehost-live

– Vazquez, J., Short, B., Findlow, A., Nixon, B., Boulton, A., & Armstrong, D. (2003). Outcomes of hyaluronan therapy in diabetic foot wounds. Diabetes Research And Clinical Practice, 59(2), 123-127.(Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=12560161&site=ehost-live

– Itano, N. (2008). Simple Primary Structure, Complex Turnover Regulation and Multiple Roles of Hyaluronan. Journal Of Biochemistry, 144(2), 131-137. doi:10.1093/jb/mvn046 (Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=44544160&site=ehost-live

– Sobotka, L., Manak, J., Vyroubal, P., Mottl, R., Blaha, V., Slemrova, M., & Chobola, M. (2008). Successful treatment of surgical abdominal wounds complicated by multiple bowel fistulas with a combination of total parenteral nutrition, hyaluronan-iodine complex and delayed surgery: results of a monocentric experience. Nutritional Therapy & Metabolism, 26(4), 177-183.(Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=rzh&AN=2010256132&site=ehost-live

– Price, R., Myers, S., Leigh, I., & Navsaria, H. (2005). The role of hyaluronic acid in wound healing: assessment of clinical evidence. American Journal Of Clinical Dermatology, 6(6), 393-402. (Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=16343027&site=ehost-live

– Cutting, K. F. (2011). Wound healing through synergy of hyaluronan and an iodine complex. Journal Of Wound Care, 20(9), 424-430. (Permalink): http://search.ebscohost.com/login.aspx?direct=true&db=rzh&AN=2011345672&site=ehost-live

Read More
Ago 3, 2012

STAGNANT WOUNDS APPROACH: FOSTERING EPITHELIALIZATION

ENFOQUE DE LAS HERIDAS ESTANCADAS: FOMENTAR EPITELIZACIÓN

AUTORES: Vítor Santos, José Marques, Ana Sofia Santos, Bruno Cunha, Marisa Manique

RESUMO

As feridas estagnadas constituem sem sombra de dúvida um dos maiores desafios em tratamento de feridas. O seu principal desafio reside na dificuldade em fazer progredir a cicatrização de uma ferida com um leito da ferida limpo, em foi efectuada a exclusão da presença de biofilmes, sem sinais de infecção, com boa gestão do exsudado e factores patológicos sistémicos do individuo controlados, entre outros aspectos. Ainda assim há feridas que “teimam” em não cicatrizar. É fundamental compreender os mecanismo que permitem o equilíbrio do micro-ambiente da ferida, para que a proliferação celular e os mecanismos de cicatrização não sejam inibidos ou destruídos. Para tal, recorreu-se a uma revisão sistemática de literatura na base de dados EBSCO, de modo a encontrar evidência científica, que possa contribuir para a melhoria da prática clinica.

Palavras chave: feridas, estagnadas, Proteinases

ABSTRACT

Stagnant wounds are without a doubt one of the biggest challenges in wound care. Their main challenge is the difficulty in advancing the healing of a wound with a clean wound bed, with excluded presence of biofilms, without signs of infection, with good management of exudate and systemic pathological factors of the individual controlled among other things. Yet there are wounds that “insist” not to heal. It is essential to understand the mechanisms that enable the balance of the micro-environment of the wound, so that the cell proliferation and healing mechanisms are not inhibited or destroyed. To this end, we used a systematic review of literature in the database EBSCO, in order to find scientific evidence that can contribute to the improvement of clinical practice.

Keywords: wounds, stagnant, Proteinases

Introdução

Um conjunto complexo de eventos, tem lugar após a lesão da pele, com vista à sua cicatrização. Este processo apesar de parecer simples, reveste-se de uma relativa complexidade e apesar da vasta investigação efectuada nesta área, ainda há aspectos por esclarecer, pois mesmo com o aumento do conhecimento na área, e desenvolvimento de novas técnicas e materiais, deparamo-nos diáriamente com feridas estagnadas, que não cicatrizam ou vêem ou seu tempo de cicatrização prolongado, apesar dos nossos melhores esforços. Estamos portanto perante uma problemática que causa ansiedade e stress psicológico aos profissionais e doentes e agrava o impacto financeiro, desde sempre significativo, deste tipo de feridas (EWMA, 2006).

Na maioria dos casos, a abordagem da ferida estagnada, envolve não somente a promoção da granulação, mas principalmente da epitelização. A epitelização é alcançada através da migração de células epiteliais através da superficie da matriz extracelular da ferida, sendo este evento alcançado num ambiente rico em fibroblastos, factores de crescimento, ácido hialurónico, colagénio e fibronectina, sendo a sobrevivência deste tecido delicado altamente dependente de um ambiente húmido devidamente equilibrado (Russell, 2000). Com esta revisão sistemática da literatura, pretende-se uma abordagem estruturada do equilíbrio da matriz extracelular da ferida crónica, com vista à promoção da epitelização.

METODOLOGIA

De modo a efectuar a revisão sistemática, recorreu-se à formação de uma pergunta de investigação, o que permitiu definir os critérios de inclusão/ exclusão: (P) Em relação à pessoa com ferida crónica estagnada, quais as intervenções (I) com vista à promoção da epitelização (O)? O objetivo desta revisão sistemática de literatura é divulgar as opções disponíveis para o equilibrio do micro-ambiente da ferida.

Os critérios de inclusão utilizados privilegiam as revisões sistemáticas da literatura, guidelines de instituições com relevância internacional nesta área, RCT’s e outros estudos do tipo experimental e outroas artigos relevantes; possuam delimitação temporal inferior a 20 anos, exceto no caso dos autores de referência de anos precedentes, que poderão também ser incluídos; estejam disponíveis integralmente. Os critérios de exclusão abrangem os estudos que não obedecem aos critérios de significância (importância que o artigo tem para o tema em estudo, para os clientes, para a enfermagem enquanto profissão e ciência), exequibilidade (disponibilidade ou recursos para desenvolver a pesquisa) e testabilidade (a formulação do problema deve ser mensurável tanto por métodos quantitativos como qualitativos). Excluíram-se também todos os artigos pagos. A revisão bibliográfica resultou da pesquisa eletrónica na Base de dados EBSCO, seleccionando as bases CINAHL e Medline.

Em todas as pesquisas foram procurados artigos científicos publicados em texto integral (05-08-2011), publicados entre 1990 e 2011, assim na primeira pesquisa usamos as seguintes palavras-chave: Wound* AND Epithelialization OR Delayed healing. Através desta pesquisa obtivemos um total de 283 artigos, a partir dos quais foram selecionados apenas 13 artigos.

Funções das MMP’s: Metaloproteinases da Matriz

As metaloproteinases da matriz  (MMPs), que fazem parte da família mais alargada das enzimas metaloproteinases, assumem um papel importante na cicatrização das feridas estagnadas (Russell, 2000; Gibson et al., 2009).

Os substratos naturais para as diferentes MMPs variam substancialmente, mas incluem importantes proteínas da matriz extracelular (MEC)s como o colagénio, a gelatina e os proteoglicanos. As MMPs degradam estas proteínas fragmentando-as em pequenas partes (Gibson et al., 2009; Schultz, 2003).

A designação “matriz metaloproteinase” (ou “matriz metaloprotease”) indica as propriedades-chave partilhadas pelas MMPs.

Todas elas:

– Preferencialmente, degradam as proteínas que compõem a matriz extracelular dos tecidos (Gibson et al., 2009; Schultz, 2003)

– Requerem um ião metálico (zinco) no centro activo da enzima (Gibson et al., 2009; Schultz, 2003)

Em cicatrização de feridas normal, as MMPs são produzidas pelas:

– Células inflamatórias activadas (neutrófilos e macrófagos) (Gibson et al., 2009; Schultz, 2003)

– Células das feridas (células epiteliais, fibroblastos e células endoteliais vasculares) (Gibson et al., 2009; Schultz, 2003)

Quando sintetizadas inicialmente, as MMPs permanecem em forma latente (inactivas ou pro-MMP). Elas são activadas por outras proteases que recortam uma parte pequena da molécula. Isto abre o centro activo da molécula MMP e permite à MMP ligar-se ao(s) substrato(s) da sua proteína. Outras células chamadas inibidores de tecido de metaloproteinases (TIMPs) podem inibir as MMPs activadas e bloquear a activação de pro-MMPs (EWMA, 2006; Gibson et al., 2009; Schultz, 2003).

Estas enzimas desempenham papéis essenciais e benéficos em pelo menos cinco processos principais da cicatrização normal, através da remoção de Matriz danificada e bactérias (fase inflamatória), degradação da membrana basal capilar para angiogénese e migração de células epidérmicas (fase proliferativa), bem como na contracção  e remodelação da matriz cicatricial (fase remodelativa) (Gibson et al., 2009)

Assim verifica-se que as MMP’s decompõem a MEC danificada que ocorre na margem de lesões cutâneas agudas. Este facto permite que os novos componentes da MEC (ex. o colagénio, a fibronectina e os proteoglicanos) sintetizados pelas células das feridas se integrem correctamente nos componentes intactos da MEC nos rebordos das feridas (Ayello et al., 2004; Schultz, 2003).

As MMP’s degradam a membrana basal em redor dos capilares. Isto permite às células capilares endoteliais migrar de capilares perto da ferida e constituir vasos sanguíneos novos no leito da ferida (Schultz, 2003). São igualmente necessárias para a migração de células epiteliais, fibroblastos e células vasculares endoteliais. As MMPs segregadas por miofibroblastos são necessárias para a contracção da cicatriz da nova MEC sintetizada. Feridas provenientes de grandes excisões em humanos podem contrair até cerca de 20% da área da lesão inicial. Também na remodelação da cicatriz, necessária pelo facto de as feridas cutâneas inicialmente produzirem uma matriz de cicatrização altamente desorganizada, na qual se continuam a produzir níveis baixos de MMP’s muito depois da cicatriz inicial estar formada. Estas MMP’s removem lentamente a MEC desorganizada, que é gradualmente substituída por uma MEC com estrutura mais normalizada e altamente organizada (Russell, 2000; Gibson et al., 2009; Schultz, 2003; Ayello et al., 2004).

Influência das MMP’s no atraso da Cicatrização

Embora as MMPs tenham o papel importante de degradação das proteínas para que novos tecidos se formem, quando as MMPs estão presentes no leito da ferida em demasiada quantidade, por muito tempo, e nos lugares errados, começam a degradar proteínas que não são o seu substrato normal. Esta situação pode resultar na destruição de proteínas erradas, tais como as proteínas de factores de crescimento, de receptores e da MEC, essenciais para a cicatrização, acabando por comprometê-la. Existem provas substanciais que corroboraram que as MMPs em geral existem em níveis muito elevados nas feridas com atraso na cicatrização comparativamente aos níveis encontrados na cicatrização de feridas agudas (Gibson et al., 2009; Schultz, 2003).

Os potenciais efeitos danificadores destes níveis elevados são agravados pelo facto de que os níveis de TIMP em feridas crónicas em geral estão ligeiramente inferiores aos das feridas agudas (Russell, 2000; Gibson et al., 2009; Schultz, 2003).

As proteases atraíram as atenções na cicatrização das feridas quando se descobriu que a MEC das feridas que não cicatrizavam não continha fibronectina intacta, uma molécula necessária para a adesão celular e acção de factores de crescimento. Outro aspecto relacionado, é o reaparecimento de fibronectina intacta no leito da ferida à medida que esta fez a viragem no sentido da cicatrização. Vários grupos de investigação vieram a demonstrar que a quantidade de MMP-9 activa está inversamente correlacionada com a velocidade de fecho das feridas, ou seja, níveis elevados de MMP-9 estão correlacionados com reduzidas velocidades de fecho de feridas (Gibson et al., 2009).

Contudo, a capacidade de cicatrização é afectada por um amplo espectro de factores intrínsecos e extrínsecos. Por exemplo, a idade avançada, a medicação (ex. esteróides), a alimentação deficiente, as patologias (ex. diabetes, doença venosa, doença arterial periférica) e a biocarga da ferida podem, cada uma independentemente, interferir no processo de cicatrização. Como descrito, estas características resultam num ambiente hostil na ferida em que tecido novo e factores de crescimento são degradados e a ferida é perpetuada. As feridas nesta situação são frequentemente descritas como “estagnadas” na fase inflamatória da cicatrização, onde podem permanecer meses ou até mesmo ano. (EWMA, 2006; Russell, 2000; Gibson et al., 2009; Schultz, 2003; Ayello et al., 2004)

Novo estímulo para o processo de cicatrização

O objectivo principal da abordagem da ferida estagnada, é fazer pender a balança a favor do processo de reparação. No que se refere à ferida, romper o círculo vicioso  e estimular a cicatrização envolverá:

– Tratar a causa – i.e. reduzir a inflamação (Gibson et al., 2009).

– Gerir as consequências – i.e. reduzir a actividade das proteases mantendo em simultâneo um ambiente húmido na ferida (Gibson et al., 2009).

A redução da actividade excessiva das proteases está focada na ferida e pode ser obtida por (Gibson et al., 2009; Schultz, 2003):

– Eliminação das proteases – ex. pela absorção de fluidos da ferida ricos em proteínas pelos pensos ou pela eliminação com terapia de pressão negativa

– Redução da actividade das proteases – ex. através pensos à base de colagénio

– Inibição da síntese de MMP.

Quando indicado, a biocarga da ferida pode ser reduzida com pensos antimicrobianos (ex. tecnologias baseadas em prata ou iodo) e antibióticos. No entanto, os antibióticos e os antimicrobianos são menos eficazes no tratamento de bactérias num biofilme, e a sua eliminação física por desbridamento ou por agentes surfactantes, são métodos demonstrados para remoção da carga do biofilme (Schultz, 2003; Ayello, 2004).

Abordagem terapêutica: Controlo das MMP’s

Alguns dos pensos disponíveis no mercado demonstram alguma capacidade para modular a actividade das proteases. Os produtos desenvolvidos para reduzir a actividade proteolítica excessiva e reequilibrar o ambiente da ferida devem, idealmente, desactivar as MMP’s derivadas tanto do hospedeiro como das bactérias. Foi realizada investigação significativa com especial incidência em pensos que actuam para reduzir os níveis de MMP’s pela absorção do exsudado da ferida e através da retenção das proteases na estrutura do penso. De facto, isto limita e desactiva o excesso de MMPs presente no ambiente da ferida (Gibson et al., 2009; Schultz, 2003). Muitos estudos foram publicados acerca do primeiro penso modulador de MMP’s, constituido por celulose regenerada oxidada (ORC) e colagénio, com ou sem prata. Estes ilustram a capacidade deste penso de reduzir a actividade das proteases, eliminar radicais livres e controlar os níveis bacterianos (Martin, 2006). Um estudo clínico controlado randomizado também demonstrou a capacidade dos pensos de colagénio/ORC de reduzirem as proteases, tendo este facto sido correlacionado com um efeito positivo sobre a cicatrização (Martin, 2006).

Também o pH é um aspecto importante no controlo do microambiente da ferida crónica, pois verifica-se que as feridas agudas cicatrizam num meio ácido, como uma resposta fisiológica temporária, resultante de vários factores: 1) produção de ácido láctico; 2) aumento da exigência de O2 e diminuição da perfusão tecidular, com aumento local de pCO2 (Menoita & Santos, et al., 2011). Esta acidose é fisiológica e beneficia o processo de cicatrização. O pH do leito das feridas crónicas encontra-se entre 7,15-8,9 (Menoita & Santos, et al., 2011). Todas aquelas que apresentam um pH mais alcalino apresentam períodos de cicatrização mais demorados (Menoita & Santos, et al., 2011).

 

 

 

 

 

Figura 1: pH da das feridas e cicatrização.

Greener et al (2005) verificaram que a acção das proteases está dependente do pH do meio, como a catepsina G, a plasmina elastase e as MMP-2 que são relevantes para a degradação da matriz provisória (Menoita & Santos, et al., 2011). Foi realizado um estudo a 19 pessoas com feridas crónicas, tendo sido colhidas várias amostras do exsudado. As amostras demonstraram um valor de pH de 7,5-8,9. Os mesmos autores revelam que o pH óptimo para as MMP-2, a plasmina e a elastase é de 8,0 e que uma mudança do pH do leito da ferida para 6,0 implicaria uma diminuição de 40-90% da sua actividade, com implicações sobre a bioquímica da actividade proteolítica, nesta fase (Menoita & Santos, et al., 2011). Rogers et al (1995) encontraram MMP em elevada quantidade no tecido de granulação numa úlcera de pressão, mas com a adição de um produto que acidificasse o meio, verificaram que a sua actividade ficava reduzida (Menoita & Santos, et al., 2011).

Devido o alto teor de ácidos, o pH do mel é de 3,9/3,5. Um estudo realizado por Gethin e Cowman (2006), a 20 feridas crónicas durante um período de duas semanas, concluíram que aquelas que tinham um pH ≤ 7,6 apresentaram uma redução de 30% nas suas dimensões, com a aplicação do mel8. Também a aplicação de maltodextrina + ácido ascórbico, em teoria, é susceptível de induzir este tipo de efeito, apesar da falta de estudos com nível de evidência elevado (Menoita & Santos, et al., 2011).

Existe, também, no mercado uma pomada que controla o pH local da ferida e que modula a actividade das proteases. Esta consiste numa matriz de goma com ligações cruzadas que neutraliza os iões básicos em excesso presentes, conseguindo reduzir o pH para 5. É de ressalvar que esta vai apenas inibir a actividade das proteases, sem provocar a sua desactivação permanente.

Por seu lado o Poliacrilato Super Absorvente, que existe no mercado impregnado com solução de Ringer, ou desidratado, sob a forma de pensos com grande capacidade de absorção, desempenha um importante papel ao neutralizar MMP, absorvendo-as para o seu núcleo, fruto da grande afinidade deste material para com fluídos proteicos (Eming & Smola et al., 2008).

 

 

 

 

 

 

 

Este efeito traduz-se pela redução da actividade das MMP em 88% (Eming & Smola et al., 2008).

 

 

 

 

 

 

 

 

 

 

 

 

 

Recentemente surgiu no mercado um material que inibe directamente a acção das MMP’s e que promove a acção dos factores de crescimento, o penso impregnado com o factor nano-oligossacarídeo (NOSF) (Schmutz, et al., 2008).

Também o gel tópico de sucralfato, é uma opção bastante válida para o tratamento de feridas crónicas estagnadas, ao promover a angiogénese, o que favorece a formação de tecido de granulação, bem como promove a proliferação de fibroblastos, e logo a formação de colagénio. Estimula ainda o factor de crescimento epitelial (Kouchak et al., 2008).

O ácido hialurónico, é também utilizado desde há muitos anos no tratamento especifico de feridas estagnadas, primeiro sob a forma de apósito seco, absorvível, depois sob a forma de gel mais recentemente, sendo que surge agora associado a antissépticos como a prata ou o iodo em concentrações mínimas, que permitem controlar a colonização critica da ferida. Era esta principal causa de abandono deste tipo de terapêutica, o facto da ferida voltar a estagnar devido a um aumento da carga bacteriana, com o evoluir do tratamento. A sua abordagem é multifacetada, no processo de cicatrização, na medida em que se trata de um componente da matriz extra-celular, responsável pela regulação da hidratação da mesma, facilitando assim a migração de factores de crescimento, células inflamatórias, fibroblastos e queratinócitos. É um forte promotor da angiogénese (e logo, da granulação) e re-epitelização (Slavkovsky, 2010).

Numa segunda linha da abordagem da ferida estagnada, surgem alguns materiais cuja acção incide na regulação do ambiente húmido ideal para a ferida cicatrizar. Um exemplo é o penso de hidrogel com matriz iónica, que promove o equilibrio do ambiente húmido das feridas pouco ou moderadamente exsudativas. Basicamente, o que distingue este material é por um lado a capacidade de fornecer a humidade que a  ferida necessita, sem perda significativa de massa e sem macerar a pele perilesional, sendo que no caso de exsudado ligeiro, tem capacidade para absorção eficaz do mesmo. Existe evidência de que estimula a produção de tecido de granulação e é bastante eficaz no alivio da dor (Armitage, 2004).

Considerações Finais

O controlo do microambiente da ferida estagnada não é uma tarefa fácil para os profissionais de saúde, pois requer uma grande perícia clínica para descartar outras causas mais simples de cronicidade/estagnação, por um lado, bem como uma rigorosa selecção dos materiais a utilizar de acordo com o estadio em que a ferida se encontra, por outro. Esta selecção deve ser criteriosa e não “standardizada”, deve-se procurar o material certo para o doente certo, e não aplicar o mesmo material em todos os doentes sob o pretexto de houve sucesso em casos anteriores, pois este tipo de abordagem deve ser o mais possível custo-efectiva, para o bem dos doentes e sustentabilidade do sistema de saúde. Deve assim imperar o bom senso na selecção dos materiais, e o rigor na análise do doente/ferida e sua história clinica.

REFERÊNCIAS BIBLIOGRÁFICAS

(1) EUROPEAN WOUND MANAGEMENT ASSOCIATION (2006). Position Document: Identifying criteria for wound infection. East Sussex, Reino Unido

Disponível em: http://ewma.org/fileadmin/user_upload/EWMA/pdf/Position_Documents/2008/English_EWMA_Hard2Heal_2008.pdf

 (2) Russell, L. (2000). Understanding physiology of wound healing and how dressings help. British Journal Of Nursing (Mark Allen Publishing), 9(1), 10.

Disponível em: http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=10887841&site=ehost-live

(3) Gibson D, Cullen B, Legerstee R, Harding KG, Schultz G. (2009) MMPs Made Easy. Wounds International; 1(1):

Disponível em: http://www.woundsinternational.com

(4) Schultz, G. S., Sibbald, R., Falanga, V., Ayello, E. A., Dowsett, C., Harding, K., & Vanscheidt, W. (2003). Wound bed preparation: a systematic approach to wound management. Wound Repair & Regeneration, 11S1-S28.

Disponível em: http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=9378709&site=ehost-live

 (5) Ayello, E., Dowsett, C., Schultz, G., Sibbald, R., Falanga, V., Harding, K., & Vanscheidt, W. (2004). Time heals all wounds. Nursing, 34(4), 36-42

Disponível em: http://search.ebscohost.com/login.aspx?direct=true&db=rzh&AN=2004061131&site=ehost-live

 (6) Martin, L. (2011). Healing a chronic wound using Promogran Prisma. Journal of Community Nursing, 25(3), 30-31.

Disponível em: http://search.ebscohost.com/login.aspx?direct=true&db=rzh&AN=2011054226&site=ehost-live

 (7) Menoita, E., Santos, V., Santos, A., Gomes C. (2011). pH no controle do microambiente das feridas crónicas. Coimbra, Sinais Vitais, n.º94 (Janeiro), 54-61

 (8) Gethin, G., Cowman, S., & Conroy, R. (2008). The impact of Manuka honey dressings on the surface pH of chronic wounds. International Wound Journal, 5(2), 185-194. Disponível em: http://search.ebscohost.com/login.aspx?direct=true&db=rzh&AN=2009988069&site=ehost-live

(9)   Eming S, Smola H, Hartmann B, Malchau G, Wegner R, Krieg T, Smola-Hess S, (2008) The inibition of matrix metalloprotease activity in chronic wounds by a polyacrylate superabsorver. Biomaterials , ISSN: 0142-9612; Vol. 29 (19), pp. 2932-40; PMID: 18400293

Disponível em: http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=18400293&site=ehost-live

 (10) Schmutz JL; Meaume S; Fays S; Ourabah Z; Guillot B; Thirion V; Collier M; Barrett S; Smith J; Bohbot S; et al.; International Wound Journal, 2008 May; 5 (2): 172-82 (journal article – randomized controlled trial, research) ISSN: 1742-4801 PMID: 18494623

Disponível em: http://search.ebscohost.com/login.aspx?direct=true&db=rzh&AN=2009988068&site=ehost-live

(11) Kouchak, Maryam; Hemmati, Ali Asghar; Khorasgani, Zahra Nazari; Amiri, Omid. (2008) Toxicology Letters, Oct2008 Supplement, Vol. 180, pS238-S238, 1p; DOI: 10.1016/j.toxlet.

Disponível em: http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=33776353&site=ehost-live

(12) Slavkovsky, R.; Kohlerova, R.; Jiroutova, A.; Hajzlerova, M.; Sobotka, L.; Cermakova, E.; Kanta, J.. (2010) Clinical & Experimental Dermatology, Vol. 35 Issue 4, p373-379, 7p

Disponível em: http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=49207935&site=ehost-live

(13) Armitage, Margaret; Roberts, Joan. (2004) British Journal of Community Nursing, Vol. 9 Issue 12, pS16-S22, 6p

Disponível em: http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=15399095&site=ehost-live

Read More