Jul 26, 2012

WOUND HEALING: STAGNANT/ CHRONIC WOUNDS PARTICULARITY

CICATRIZACIÓN DE HERIDAS: LA PARTICULARIDAD DE LAS HERIDAS CRÓNICAS/ESTANCADAS

AUTORES: Vítor Santos, Elsa Menoita, Cláudia Gomes, Ana Sofia Santos, José Testas

RESUMO

O conhecimento dos processos fisiológicos envolvidos na cicatrização de feridas é essencial para os profissionais. É não só fundamental identificar os principais processos celulares e moleculares da cicatrização, como compreender as diferenças fundamentais entre feridas agudas e crónicas. Apesar de uma preparação do leito da ferida crónica adequada usar métodos padronizados, algumas falham na cicatrização ou cicatrizam lentamente devido a uma fase inflamatória não resolvida. O tratamento bioactivo conduz à reversão de alguns defeitos celulares e moleculares que existem nas feridas crónicas, permitindo (re)iniciar a cicatrização. A compreensão da fisiologia subjacente a estes eventos e sua correcta abordagem são vitais para um sistema de saúde que deve ser o mais custo-efectivo possível, e com uma população alvo cada vez mais envelhecida e com cada vez mais co-morbilidades.

PALAVRAS-CHAVE – Feridas Crónicas, cicatrização, fisiologia.

ABSTRACT

Knowledge of the physiological processes involved in wound healing is essential for the professionals involved. It is not only essential to identify the key cellular and molecular processes of wound healing, but also understand the fundamental differences between acute and chronic wounds. Although the wound bed preparation uses appropriate standard methods, some fail wounds to heal wound or heal slowly due to an unresolved inflammatory phase. The bioactive treatment leads to reversal of some cellular and molecular defects that exist in chronic wounds, allowing to restart healing. The understanding of the physiology behind these events and their correct approach is vital for a health system that has be the most cost-effective as possible, and has a target population growing older and with more co-morbidities.

KEY WORDS – Chronic Wounds, healing, physiology

INTRODUÇÃO

A cicatrização de feridas é um processo complexo que envolve a organização de células, mediadores químicos e matriz extracelular com o objectivo de reparar o tecido lesado. Logo o tratamento de feridas busca o encerramento rápido da lesão de forma a se obter cicatriz funcional e esteticamente satisfatória. Como tal, é indispensável uma melhor compreensão do processo biológico envolvido na cicatrização de feridas e regeneração tecidular. Com a lesão dos tecidos, inicia-se de imediato o processo de cicatrização, que compreende uma sequência de eventos moleculares levando à restauração do tecido lesado. Só durante a fase fetal a reparação de lesões se dá sem a formação de cicatriz, ocorrendo perfeita restauração do tecido pelo processo de neoformação tecidular. Após o nascimento, o organismo falha nesse processo, levando à formação da cicatriz. É portanto de vital importância, compreender como de desenrola este processo e quais as condicionantes existentes no caso das feridas crónicas/complexas.

1.PROCESSO DE CICATRIZAÇÃO EM FERIDAS AGUDAS

O processo de cicatrização das feridas é contínuo (JONES et al, 2006) composto por uma série de estágios complexos, interdependentes e simultâneos, que são descritos em fases (BLANES, 2004). Do ponto de vista morfológico, identificam-se quatro fases consecutivas, havendo um dinamismo com sobreposição entre elas. É um processo dinâmico e envolve uma resposta coordenada de múltiplas células. A cicatrização é descrita em quatro fases: hemostase, inflamatória, proliferativa e remodelação. A fase de hemostase é uma resposta de emergência biológica, em que ocorre nos minutos seguintes a uma lesão aguda e inicia-se um extravasamento sanguíneo que leva ao preenchimento da área da lesão com plasma e elementos celulares, principalmente plaquetas. A agregação plaquetária e a coagulação sanguínea formam um tampão, rico em fibrina, que para além de restaurar a hemostase, forma uma barreira contra a invasão de microrganismos, organiza uma matriz preliminar necessária à migração celular e é também um reservatório de citoquinas e factores de crescimento, que serão libertados nas fases seguintes do processo de cicatrização (MENDONÇA e NETO, 2009).

Em resultado da activação da cascata de coagulação e juntamente com a libertação de factores de crescimento, produzem-se numerosos mediadores vasoactivos e factores quimiotáxicos que promovem o recrutamento de células inflamatórias para o leito da ferida dando-se inicio à fase inflamatória (MENDONÇA e NETO, 2009). As células inflamatórias são os neutrófilos e os macrofagos, que no leito da ferida, para além de fagocitarem as bactérias, os fragmentos celulares e os corpos estranhos produzem citoquinas (MENDONÇA e NETO, 2009). A citoquina é um termo abrangente referente a mediadores que preparam a ferida para a fase proliferativa que inclui factores de crescimento (como por exemplo, o Factor de Crescimento derivado das Plaquetas – PDGF -, Factor de Crescimento beta Transformador – TGF-beta, o Factor de Crescimento endotelial Vascular – VEGF e o Factor de Crescimento Epidermal – EGF -) (SCHULTZ et al, 2009) e citoquinas pró-inflamatórias (como o Factor de Necrose Tumoral – TNF – α e a Interleucina-1 – IL-1).

As citoquinas pró-inflamatórias produzem, por sua vez, proteinases. As proteinases são enzimas proteolíticas que estão presentes em todos os exsudados de feridas e que quebram as proteínas danificadas da matriz extracelular (ECM) (SCHULTZ et al, 2009), num processo designado de proteólise.

A ECM é constituída, essencialmente, por proteínas estruturais, como o colagénio (identificados pelo menos 19 tipos de colagénio geneticamente distintos, contudo os principais da pele são o colagénio I e III) e elastina; mas, também, por glicoproteínas (como fibronectina, laminina e vitronectina), glicosaminoglicanos – GAG (sendo o mais conhecido o ácido hialurónico) e proteoglicanos a desempenhar um papel fundamental na adesão e migração celular (SCHULTZ et al, 2009).À família das enzimas proteolíticas designa-se por metaloproteinases da matriz (MMP). Assim, estas endopeptidases zinco-dependentes são fundamentais para o processo de cicatrização, mas na quantidade certa e com um tempo de actuação adequado (GIBSON et al, 2009). As MMPs, quando sintetizadas pela primeira vez, apresentam-se numa forma latente, inactiva (pró-MMPs), sendo à posteriori activadas por outras proteases, e a partir daí as MMPs vão-se ligar às proteínas da matriz. Foram identificadas no ser humano, até à data, 23 MMPs. As que têm sido foco de maior investigação na cicatrização de feridas são: MMP1 (Colagenase Intersticial), MMP – 8 (Neutrófilo – Colagenase) e MMP- 13 (Colagenase), que têm uma acção muito especifica em separar a tripla hélice das fibras de colagénio. A molécula de colagénio desnaturada daí resultante pode ser atacada por outras proteases em particular a MMP -2 e MMP-9; MMP-2 (Gelatinase – A) e MMP – 9 (Gelatinase B), que actuam nos colagénios desnaturados, colagénio IV, V, VII, X, elastina e fibronectina; MMP – 12 (Macrofago Metaloelastase), que não só actua nas fibras proteicas da elastina, mas, também, por ser pouco específica pode ligar-se ao colagénio e degradá-lo). A actividade proteolítica na ECM é muito regulada, havendo um controlo na activação e na inibição das enzimas. Os Tissue Inhibitors of Metaloproteinase (TIMP’s) são activados conjuntamente com as MMP’s e a sua função é regular o desempenho destas ligando-se a elas inactivando-as. Para além dos TIMP’s, existem outros inibidores das metaloproteinases, como os Factores de Crescimento Beta Transformadores (TGF-beta) sintetizado por várias células, nomeadamente pelos macrófagos e armazenados nas plaquetas. Nas feridas agudas existe um equilibrio entre os níveis de MMP’s e os TIMP’s.

A fase proliferativa é responsável pela síntese da ECM, com produção de novas proteínas, nomeadamente colagénio, pela acção dos fibroblastos; pela formação de tecido de granulação através do fenómeno de angiogénese, que consiste na formação de novos vasos sanguíneos a partir de células vasculares endoteliais de vasos adjacentes.

Alguns fibroblastos têm um papel acrescido – os miofibroblastos, que são responsáveis pela contracção da úlcera. Majno (1996) citado por Balbino et al (2005) relatou que os miofibroblastos são células intermediárias entre as musculares lisas e os fibroblastos. Apesar de seu mecanismo contráctil estar ainda por ser esclarecido, estas células são encontradas alinhadas ao redor de depósitos da nova matriz extracelular, fazendo uniões célula a célula e gerando força de tensão, em que os feixes de miosina encurtam os seus bordos (RUSSEL, 2000). Flanagan (1997) citada por Russel (2000, p. 26), sugere que “a contracção da ferida só ocorre quando a sua base consiste em tecido de granulação, o que explica o facto de não ocorrer diminuição do tamanho da ferida até que a sua base tenha sido trazida até à superfície. As feridas profundas demoram um tempo considerável a contrair e a apresentar cicatrização. A contracção parece ser responsável por 40% a 80% do fecho da ferida.”

Nesta fase a ocorrência predominante é a substituição da matriz básica composta por fibrina, fibronectina, por ácido hialurónico e colagénio – proteína responsável por conferir a arquitectura da pele. Por fim, os factores de crescimento vão também estimular as células epiteliais, que migram só para tecidos viáveis A epitelização caracteriza-se portanto pela migração horizontal das células epitelias basais – Salto de Rã dos bordos da ferida, apêndices epidérmicos e anexos cutâneos, e ainda pela contracção da ferida através dos miofibroblastos (MENDONÇA e NETO, 2009).

A última fase da cicatrização é a remodelação, onde ocorre a tentativa de reestruturação das fibras de colagénio (com substituição progressiva do colagénio III, que vai sofrendo uma degradação, por colagénio I) (JIE LI et al, 2007) e diminuição de todos os elementos celulares pelo processo de apoptose (HUANG et al, 2003; MENDONÇA e NETO, 2009). Este processo pode prolongar-se até dois anos após o encerramento da lesão (DEALEY, 2007 e STEPHEN-HAYNES e HAMPTON, sd, p.3).

Quadro 1: Fase Inflamatória Prolongada

2. PROCESSO DE CICATRIZAÇÃO DAS FERIDAS COMPLEXAS

Primeiramente, é de advertir que o conceito ferida crónica está a entrar em desuso, pois com o seu recurso parece que há uma resignação do seu Status Quo, estando portanto a ser substituído por ferida complexa ou complicada (MAJNO, 2006). Uma ferida crónica/complexa é aquela que permanece estagnada em qualquer uma das fases do processo de cicatrização por um período de seis semanas ou mais (COLLIER, 2003 citado por GOUVEIA, 2003). Hart citado por Jones et al (2006) define quatro factores que podem induzir à cronicidade de uma ferida: corpos estranhos, isquémia, trauma físico repetido e/ou bioburden elevado. Assim, as feridas sujeitas a factores que podem induzir à cronicidade, ficam estagnadas numa fase da cicatrização (STEPHEN-HAYNES e HAMPTON, sd).

Contrariamente às feridas agudas, não existe um equilíbrio entre os níveis de MMP’s e os TIMP’s (ENOCH e PRICE, 2004; JIE LI et al, 2007; SCHULTZ et al, 2009). Numa fase inflamatória prolongada, existe um estímulo pró-inflamatório constante, e consequentemente as células leucocitárias produzem mais MMP’s que, essenciais para a cicatrização em feridas agudas, se tornam prejudiciais nas crónicas, quando em excesso, destruindo ou corrompendo continuamente as proteínas essenciais da ECM (JIE LI et al, 2007; KANE, 2007; SCHULTZ et al, 1998; SCHULTZ et al, 2009). Adicionalmente, as proteinases captam os factores de crescimento, tornando-os indisponíveis para o processo de cicatrização. Assim, a bioactividade do exsudado das feridas complexas é bioquimicamente diferente do das feridas agudas (TARNUZZER e SCHULTZ, 1999), e inibe a proliferação das células endoteliais, essenciais para a fase de angiogénese; de fibroblastos, com impacto na formação de colagénio essencial para a formação da nova ECM e ainda a proliferação de queratinócitos, responsáveis pela epitelização. Em suma, a falha de controlo em que resulta num aumento da actividade proteolítica é uma das causas primárias de desordens na cicatrização das feridas crónicas (GOUVEIA, 2003). Segundo Falanga (2007, p. 29), “(…) o fluido de feridas crónicas bloqueia a proliferação celular e angiogénese e contém quantidades excessivas de metaloproteinases da matriz (MMP’s). (…) O fluido excessivo da ferida não tem que conter MMP’s anormais ou inapropriadamente activadas para ser prejudicial. Os componentes normais no plasma, se presentes continuamente, podem levar ao que tem sido formulado como hipótese de “aprisionamento dos factores de crescimento”.

celular e angiogénese e contém quantidades excessivas de metaloproteinases da matriz (MMP’s). (…) O fluido excessivo da ferida não tem que conter MMP’s anormais ou inapropriadamente activadas para ser prejudicial. Os componentes normais no plasma, se presentes continuamente, podem levar ao que tem sido formulado como hipótese de “aprisionamento dos factores de crescimento”.

Neste ciclo vicioso há inibição do processo de apoptose (morte celular programada) e as células tornam-se senescentes, não respondendo aos factores de crescimento, formando assim, a carga celular. Estes processos impedem a ferida de entrar na fase proliferativa da cicatrização. O facto de por vezes os bordos da ferida estarem elevados pode ser um sinal de resposta inflamatória excessiva, em que os queratinócitos não respondem por senescência ou porque há anormalidades a nível da actividade das proteinases que podem degradar a matriz extracelular enquanto esta se forma (GOUVEIA, 2003). É ainda de acrescento, que por vezes as feridas crónicas podem ficar “paralisadas” na fase de granulação e tal parece dever-se a este processo de inibição de apoptose, que interfere com a migração celular normal, formando-se um tecido de hipergranulação.

Deste modo, a fase proliferativa fica comprometida, ocorrendo uma migração celular defeituosa, com uma angiogénese menos eficiente, resultando na formação de tecido de granulação não viável (ECM defeituosa com colagénio enfraquecido), e portanto as margens da epiderme não avançam na presença de tecido de granulação não viável no leito da ferida (JOHNSON, 2009).

3. Correcção do microambiente biológico das feridas crónicas

Com base no conhecimento da cicatrização das feridas crónicas uma série de estratégias de tratamentos avançados têm sido desenvolvidos e que demonstraram resultados interessantes em feridas recalcitrantes.

Segundo Moffat et al (2007) e Cuzzel & Krasner (2003), os pensos modernos foram desenvolvidos para manter um ambiente húmido (que pode acelerar a cicatrização em 50% em comparação com uma ferida em ambiente seco) e recentemente evoluíram para uma nova geração de produtos “inteligentes”, bioactivos que interagem de forma activa nas diversas fases, de forma a estimularem a cicatrização. Normalmente mimetisam produtos endógenos que por motivos vários não exercem a sua actividade convenientemente. Os produtos bioactivos que são moduladores de proteinases estimulam a cicatrização através da inactivação do excesso de proteinases. Existem outras opções terapêuticas como o colagénio, o ácido hialurónico, os factores de crescimento, entre outros. Segundo Ferreira & Borges (2008, p. 42) estudos sobre aplicações clínicas de colagénio têm vindo a demonstrar que podem actuar como suporte mecânico e como estímulo à migração de fibroblastos fomentando a actividade metabólica do tecido de granulação, bem como no crescimento dos queratinócitos. Este é capaz de manter um ambiente húmido na interface ferida/penso favorável ao processo de cicatrização. Estimula ainda a angiogénese e o crescimento dos fibroblastos, promovendo a proliferação e migração dos fibroblastos. Está indicado em feridas crónicas sem evolução, isentas de tecido necrótico ou fibrinoso e de infecção, previamente limpas. A sua aplicação deve ser realizada de forma uniforme sobre a área lesada requerendo um penso secundário.

– A matriz moduladora das proteinases – O seu mecanismo primário fornece uma matriz de colagénio e de celulose regenerada oxidada (CRO) que actua como uma armação que retém fisicamente as MMP’s e por isso modula mecanicamente as proteinases, retirando-as do leito. Deste modo, a matriz modula e reequilibra o ambiente das feridas crónicas através da combinação de: ligação e inactivação das proteinases; ligação e protecção dos factores de crescimento naturais, que a posteriori são libertados novamente para a ferida; quimiotaxia e proliferação de fibroblastos sob a acção do colagénio e da CRO. Esta matriz demonstrou também propriedades hemostáticas (pela acção do colagénio e da CRO).

(pela acção do colagénio e da CRO). Na presença de exsudado a matriz transforma-se num gel macio, biodegradável (não sendo necessário a sua remoção). Sobre feridas secas deve utilizar-se soro fisiológico ou solução de Ringer. Caso haja tecido necrosado seco deve ser desbridado e se houver suspeita de infecção antes ou durante o tratamento, esta deve ser tratada separadamente, de forma adequada, com um antimicrobiano. Esta matriz deve ser coberta por um penso secundário, que promova um ambiente húmido. Este produto deve ser mudado em feridas exsudativas diariamente ou em dias alternados e em feridas com pouco a moderado exsudado de 3 em 3 dias. Existe uma formulação com baixa concentração de prata de modo a se obter  um controlo da colonização crítica.

– Pomada moduladora da actividade das proteinases – O pH da pele intacta é em torno de 5,5 (intervalo 4,8 – 6,0), impedindo o crescimento bacteriano. As soluções de continuidade tendem a ter um pH neutro ou ligeiramente alcalino (6,5 – 8,5). A actividade proteolítica no leito da ferida é sensível a variações de pH e modulando o pH para um ambiente mais ácido, controla-se a actividade das proteinases. Para além desta vantagem, esta pomada não permite a proliferação das bactérias, promove a remoção da fibrina e absorve o exsudado. Esta não deve ser utilizada em feridas infectadas e com tecido necrosado seco. Recomenda-se, a sua aplicação com 1-2 mm de espessura e deve-se colocar um penso secundário. O penso deve ser mudado pelo menos de 3 em 3 dias.

– De acordo com Elias (2004) o ácido hialurónico é um glicosaminoglicano (hidrato de carbono) da matriz extracelular que devido às suas propriedades hidrofílicas promove a multiplicação e a migração celular. Este pode apresentar-se sobre a forma de creme, gaze não aderente ou gel associado a baixas concentrações de iodo, e tem um papel importante na manutenção do ambiente húmido, fomentando a migração celular, na promoção da angiogénese, na proliferação de queratinócitos e diminui o excesso e consequente deposição de colagénio, reduzindo a probabilidade de formação de uma cicatriz (ELIAS, 2004). O ácido hialurónico está indicado em feridas crónicas com tecido de granulação e sem infecção. Na formulação com iodo pretende-se apenas fazer um controlo da colonização crítica. O penso com este produto deve ser mudado diariamente.

-Poliacrilato Superabsorvente (SAP) – De acordo com SMOLA (2008), o poliacrilato superabsorvente é um material com grande afinidade para moléculas de natureza proteica, sendo que as MMP’s não são excepção. Actua por duas vias, a primeira ao bloquear directamente as proteases, e segunda através da competição pelos iões Ca2+ e  Zn2+  que são essenciais para a actividade enzimática. SMOLA (2008), para além de comprovar in vitro uma inibição da actividade das MMP’s na ordem dos 87%, conseguiu resultados igualmente compatíveis in vivo, o que contribui para o equilibrio do microambiente da ferida crónica, permitindo a evolução do processo de cicatrização. São vários os factores de crescimento responsáveis pela regulação dos processos de cicatrização das feridas. Os macrofagos, as células endoteliais e as células musculares produzem, entre outros, o PDGF (factor de crescimento derivado das plaquetas). Este pode existir em forma de gel ou de biomembrana e tem uma acção quimiotáctica para macrófagos, neutrófilos, granulócitos e fibroblastos, apresentando assim um efeito proliferativo sobre o número de células da ferida. Contudo, a sua aplicação, conforme já referido, tem uma acção limitada em feridas crónicas. Spencer et al (1996) citados por Dealey (2001, p. 86) “sugerem que embora os resultados de testes clínicos tenham sido decepcionantes até agora, o interesse pelo uso de factores de crescimento levou a uma maior compreensão da composição fisiológica dos diferentes tipos de feridas crónicas.” Não existem ainda disponíveis no mercado português apósitos, com factores de crescimento.

4. Conclusão

Ao longo dos últimos 20 anos houve um grande desenvolvimento científico na área das medidas terapêuticas. Actualmente tem havido uma aposta muito forte nos conhecimentos da biologia das feridas complexas estagnadas no sentido de se conceberem linhas de orientação para a prática profissional, onde se incluam boas práticas para a preparação do leito da ferida que não devem descurar os produtos adequados à causa primária da cronicidade das feridas.

REFERÊNCIAS BIBLIOGRÁFICAS

  • •BALBINO et al (2005), Mecanismos envolvidos na cicatrização: uma revisão. In: Revista Brasileira de Ciências Farmacêuticas, São Paulo: Instituto de Ciências biomédicas. nº 1 janeiro/março.
  • •Blanes, L. (2004), Tratamento de feridas. In: Baptista-Silva-  Cirurgia vascular: guia ilustrado. São Paulo, [em linha]: http://www.bapbaptista.com
  • •Cuzzel J; Krasner D., (2003),  Curativos. In: Gogia  –  Feridas: tratamento e cicatrização. Rio de Janeiro: Livraria Editora Revinter Ltda,
  • •DEALEY, C (2007) The Care of Wounds: a guide for nurses 3rd edition. Wiley-Blackwell, Oxford.
  • •DEALEY , C. (2001) Cuidando de feridas. São Paulo: Atheneu Editora São Paulo.
  • •ELIAS, C. (2004) Material de penso utilizado em feridas crónicas. In: Nursing. nº 188, Maio. p. 25 -32.
  • •FALANGA, V. (2007) Preparação do leito da ferida: ciência aplicada à prática. In: Nursing. nº 219 Março. p. 28 – 32.
  • •FERREIRA & BORGES (2008) Propriedades curativas do penso de colagénio sem gentamicina. In: Nursing. nº 232 Abril, P.41-45.
  • •GIBSON D, et al. (2009)  MMPs Made Easy. “Wounds International”; 1(1).
  • •HAMPTON, S. (2007) Understanding overgranulation in tissue viability practice. Wound Care. Setembro, p.S24 –S30.
  • •HAMPTON, S., COLLINS F. (2004) Tissue Viability. Londres: Whurr Publishers. ISBN: 1861562373.
  • •IRION, G. (2005) Feridas: novas abordagens, manejo clínico e atlas em cores. Rio de Janeiro: Guanabara Koogan.
  • •JONES, V. et al (2006) Cicatrização de feridas agudas e crónicas. In: BARANOSKI & AYELLO. – O essencial sobre o tratamento de feridas: princípios básicos. Loures: Lusodidacta.

MENDONÇA, R., COUTINHO-NETTO, J. (2009) Aspectos Celulares da Cicatrização. An Bras Dermatol. Vol.83, nº3, p.257-262.

MENOITA, E. (2009) Ferida Crónica: modulação da actividade das proteinases. Sinais Vitais. Coimbra, nº82 Janeiro.

MOFFAT et al (2007) A preparação do leito da ferida nas úlceras de perna de origem venosa.Nursing. nº 219, Março. p. 40 – 45.

PHILLIPS,PL. et al (2010)  Biofilms Made Easy. “ Wounds International” nº 1

RUSSEL, L. (2000) Compreender a fisiologia da cicatrização das feridas. In: Nursing. nº 146 Agosto, P. 25 – 31

SMOLA, H. et al (2008) The inhibition of matrix metalloproteinase activity in chronic wounds by a polyacrylate superabsorber, in: Biomaterials, vol. 29, issue 19, July, p. 2932-2940

STEPHEN-HAYNES, J., HAMPTON S. (2010) Achieving effective outcomes in patients with overgranulation. Wound Care Alliance UK, p.1-10.

Read More
EnglishFrenchPortuguese